FINDING OF EFFECT

Golden Gate Bridge Moveable Median Barrier Project
City and County of San Francisco and County of Marin, California

Federal Project #: STPL-6003(037)

Prepared for:
Jeffrey Y. Lee, PE, Project Manager
Golden Gate Bridge, Highway and Transportation District
Administration Building, Golden Gate Bridge Toll Plaza
P.O. Box 9000, Presidio Station
San Francisco, California 94129-0601

Prepared by:
Rebecca Meta Bunse, Historian/Architectural Historian
Bryan T. Larson, Historian/Architectural Historian
JRP Historical Consulting, LLC
2850 Spafford Street
Davis, California 95618

October 2011
TABLE OF CONTENTS

1. Introduction ... 1
2. Description of the Undertaking .. 2
 2.1 Project Area .. 2
 2.2 Project Purpose and Need .. 2
 2.3 Build Alternative .. 3
 2.4 No-Build Alternative ... 4
 2.5 Construction Activities .. 4
 2.5.1 Roadway Work ... 4
 2.5.2 Demolition and Reconstruction .. 4
 2.5.3 Construction Staging Areas ... 5
 2.5.4 Equipment Storage ... 5
3. Public Participation .. 7
 3.1 Section 106 Process to Date .. 7
 3.2 On-going Public Participation ... 7
4. Description of Historical Resources ... 8
 4.1 Steps Taken to Identify Historic Properties ... 8
 4.2 Description of Historic Property ... 9
5. Application of the Criteria of Adverse Effect ... 13
 5.1 Criteria of Adverse Effect .. 13
 5.2 Application of the Criteria of Adverse Effect .. 14
6. Alternatives Considered but Rejected ... 23
 6.1 Background ... 23
 6.2 Alternatives Development and Evaluation Process .. 23
 6.3 Alternatives Considered and Rejected ... 24
7. Conclusions .. 26
8. References ... 27
9. Preparers’ Qualifications .. 30

APPENDICES

Appendix A: Figures

Appendix B: Project Correspondence
- Caltrans Letter (March 23, 2010)
- Notification to Interested Parties

Appendix C: DPR 523 Form, Golden Gate Bridge Update (2008)

Appendix D: Golden Gate Bridge Historic Status
- OHP Historic Properties Data File
- Caltrans Historical Significance – State Agency Bridge Sheets
1. INTRODUCTION

The Golden Gate Bridge, Highway and Transportation District (District) is proposing the Golden Gate Bridge Moveable Median Barrier Project, Federal Project #: STPL-6003(037) [Project]. The Project under study in this report proposes installation of a moveable median barrier along U.S. Highway 101 on and immediately adjacent to the Golden Gate Bridge in the City and County of San Francisco and County of Marin (Figure 1, Appendix A). These measures would enhance traffic safety by providing a physical barrier to separate opposing directions of traffic.

The District, in cooperation with the Federal Highway Administration (FHWA) and California Department of Transportation (Caltrans), is preparing environmental studies in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations. JRP Historical Consulting, LLC (JRP) prepared this Finding of Effect (FOE) to assess whether the Project will have an adverse effect on the Golden Gate Bridge historic property. The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, and the implementing regulations of the Advisory Council on Historic Preservation (ACHP) as these pertain to federally-funded undertakings and their impacts on historic properties, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11. This FOE was also prepared in accordance with the January 1, 2004, Programmatic Agreement Among the Federal Highway Administration, the Advisory Council on Historic Preservation, the California State Historic Preservation Officer and the California Department of Transportation Regarding Compliance with Section 106 of the National Historic Preservation Act, as it Pertains to the Administration of the Federal-Aid Highway Program in California (Caltrans Section 106 PA).

Because of the focused scope of this Project, which is limited to the U.S. 101 right-of-way on and immediately adjacent to the Golden Gate Bridge, Caltrans determined that preparation of a Historic Resources Evaluation Report (HRER) and a Historic Property Survey Report (HPSR) is not required for this Project (see Caltrans letter dated March 23, 2010, attached as Appendix B). Section 106 compliance activities and public participation conducted for this Project have included circulation of letters to parties interested in historical resources (Appendix B), and posting of regular Project Status Updates (September 2007 through March 2011) on the District website (http://goldengatebridge.org/projects/MoveableMedianBarrier.php). These efforts are discussed further in Section 3.

The Golden Gate Bridge is the only historic property within the Project Area (Figure 2, Appendix A). This historic property includes as contributing elements: the main Bridge structure (Caltrans Bridge 27 0052), the Toll Plaza Undercrossing (Bridge 34 0069), the southern approach road (also known as the Presidio Approach Road, or Doyle Drive) and its two viaducts (Bridges 34 0014 and 34 0019), as well as the Round House Gift Center. The Golden Gate Bridge historic property was determined eligible for listing in the National Register of Historic Places in 1980, with updates, and refinements to its designation status were defined in subsequent studies, as described in Section 4.

FHWA has determined that the undertaking as a whole will not have an Adverse Effect on the historic property known as the Golden Gate Bridge, pursuant to Stipulation X.C of the Caltrans Section 106 PA.
2. **DESCRIPTION OF THE UNDERTAKING**

2.1 Project Area

The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County (Figure 1, Appendix A). At completion, the total length of the median barrier would be approximately 3.1 miles, extending from just south of the Waldo Tunnel on the north side of the Bridge to just north of the Highway 1/Park Presidio area on the south side of the Bridge, as shown in the attached Project Area Map (Figure 2, Appendix A).

As discussed further below, all Project activities, including installation of the moveable median barrier and demolition and reconstruction work, will be confined to the U.S. 101 right-of-way on and immediately adjacent to the Golden Gate Bridge. Construction staging activities will take place in areas currently in use for similar Bridge operations; no expansion of the staging areas beyond their existing footprint will be permitted. Because of the focused physical scope of the Project, Caltrans has determined that preparation of a Historic Resources Evaluation Report (HRER) and a Historic Property Survey Report (HPSR) is not required (see Caltrans letter dated March 23, 2010, attached as Appendix B).

The Golden Gate Bridge is the only historic property within the Project Area. The Project has no potential to affect historic properties outside of the Project Area. Please refer to Section 4 for a description of the cultural resources addressed in this FOE.

2.2 Project Purpose and Need

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Each day, approximately 120,000 vehicles traverse the Bridge. To accommodate this many vehicles, Bridge operations crews alter the lane configuration in both the north and south directions throughout the day to provide an increased number of lanes in the peak direction. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions.

In order to increase the safety of motorists on the Bridge, as well as accommodate varying traffic demands, the Golden Gate Bridge, Highway and Transportation District (District) proposes to install a Moveable Median Barrier (MMB) system. This system will provide a semi-rigid barrier between opposing traffic lanes on the Bridge, while at the same time allowing the District the flexibility to reconfigure the lanes on the Bridge to meet the peak capacity demands. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project.

1 The text for the following chapter has been adapted from two studies prepared for this Project: AECOM Transportation, “Operations and Maintenance Report, Golden Gate Bridge Moveable Median Barrier Study, Prepared for the Golden Gate Bridge Highway and Transportation District, Federal Project Number STPL-6003(037),” July 26, 2011; and Jeffrey Barr, RLA, “Draft Visual Impact Assessment, Golden Gate Moveable Median Barrier Project,” July 26, 2011.
2.3 Build Alternative

For the Build Alternative, the District proposes installing a Steel Reactive Tension System Quickchange Moveable Barrier (SRTS-12"QMB), designed and manufactured by Barrier Systems Inc. (BSI) of Rio Vista, California. The barrier is made up of a series of inter-linked high strength steel structures filled with concrete, each unit of which measures 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway (Plate 1). To allow for curvature in the system, as well as provide expansion potential on the Bridge, the MMB is installed with Variable Length Barriers (VLB) at predetermined locations. The materials and dimensions of the VLB units are similar to the steel-clad MMB units, except that the lengths may vary from 39-½” minimum to 53-½” maximum.

Plate 1. Detail of Moveable Median Barrier steel and concrete units

At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in three lane configurations (Plate 2):

- **2N/4S Configuration** – Two northbound lanes / four southbound lanes
- **3N/3S Configuration** – Three northbound lanes / three southbound lanes
- **4N/2S Configuration** – Four northbound lanes / two southbound lanes

Plate 2. Moveable Median Barrier lane configurations
The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which is approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane (Plate 3). Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of at the north and south ends of the MMB (see Section 4.1.1).

Plate 3. Barrier Transfer Machine (BTM)

2.4 No-Build Alternative

The No-Build Alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The No-Build Alternative would continue the existing hollow plastic tube traffic separation measures.

2.5 Construction Activities

2.5.1 Roadway Work

The proposed Project would involve minor roadway work that includes removal of the existing permanent barrier, paving of the median area (north end), installation of a permanent barrier (Type 60) at the plaza area, and restriping. Restriping would be necessary for compatibility with the MMB, proposed roadway changes, and reconfigured toll booths. There would be new chevron markers to indicate a collector-distributor road adjacent to the auxiliary lane at the north end. Restriping would occur on the Vista Point on-ramp and within the highway right-of-way from the Bridge approaches just south of the toll plaza area to south of Waldo Tunnel.

2.5.2 Removal and Reconstruction

The Project would also involve modifications to the existing, non-historic toll plaza at the southern Bridge approach. The Project would require the removal of the four easternmost toll booths and the adjacent guard vestibules. One toll booth on the eastern side of the Bridge would be permanently removed and three other toll booths would be reconstructed. All three new toll booths would be about three feet taller than the existing toll booth canopy to provide vertical clearance for larger vehicles, as shown in Plate 4. The form of the modified toll plaza will remain the same as the existing toll plaza.
North of the Bridge, a portion of the existing permanent median barrier and a vegetated median strip on U.S. 101 would also be removed and paved over.

2.5.3 Construction Staging Areas

Construction staging areas have been proposed at four locations within the Golden Gate National Recreation Area (GGNRA), and would be used during Project construction activities. These proposed staging areas are located on the northern side of the Bridge in Marin County below the Marin Approach and Span 4 backspan. One is an existing gravel area located in a switchback of Conzelman Road and the other three are open gravel-surfaced areas located under the northern span of the Bridge, which are currently being used for similar staging and maintenance activities and other Bridge operations. One proposed construction staging area to the south of the Bridge is located adjacent to the Bridge toll plaza within the Presidio. This proposed staging area is an existing paved employee parking lot with 25 public spaces, located just west of the toll plaza off Merchant Road. Project-related construction equipment and materials would be stored within one or more of these construction staging areas. No expansion of the construction staging areas beyond their existing footprint will be permitted.

2.5.4 Equipment Storage

The BTM would be stored within the Bridge and roadway right-of-way. The BTM would have two storage locations within the highway median. The number of BTMs in one of these locations would vary throughout each day as different lane configurations were deployed. In the 4NB/2SB lanes configuration, both BTMs would be stored immediately north of the Bridge toll plaza, while during the 2NB/4SB lanes configuration, both BTMs would be stored in the highway median south of the Waldo Tunnel. In the 3NB/3SB lanes configuration, one BTM would be
stored at each of the storage areas. Once Doyle Drive construction is completed, the storage at the plaza area would be relocated to approximately 1,600 feet south of the toll plaza in the Presidio Parkway median.
3. PUBLIC PARTICIPATION

3.1 Section 106 Process to Date

This section presents the Section 106 process activities that have been completed, those taking place concurrently with the preparation of this Draft FOE, and those that will take place after the submittal of this document. Correspondence pertaining to this Project to date is included in Appendix B.

To date, efforts to involve the public in the Section 106 process have included:

- The District maintains a website that documents the progress and developments of the Project. It provides regular Project Status Updates, most recently updated in March 2011 (http://goldengatebridge.org/projects/MoveableMedianBarrier.php).

- The District has prepared a letter to parties interested in historical resources. The letter, dated September 30, 2011, and sent out on October 6, 2011, seeks comment or concern regarding the Project and its potential to affect the character-defining features of Golden Gate Bridge. Copies of the letter and the list of recipients are included in Appendix B. Responses to this letter will be appended to this document and included in the environmental document upon receipt.

3.2 On-going Public Participation

This section will be expanded upon after submittal of this draft report as the Section 106 process continues for the Project, and will describe all steps taken to ensure public concerns were taken into account. If concerns regarding historic properties are raised by public agencies or other interested parties, this section will identify all actions taken by the Project to ensure public concerns are taken into account in the Section 106 process. The District will also continue to update the public information website for the Project:

On-going public participation opportunities may include District Board meetings, which are open to the public. Public comments received during formal public comment periods will be part of the public record and will be incorporated into the process and the environmental document. In addition, all comments received at District Board meetings will be reviewed by the Project team for consideration as they may relate to the Project.

The District, in conjunction with Caltrans and FHWA, is continuing consultation with SHPO following 36 CFR 800.
4. DESCRIPTION OF HISTORICAL RESOURCES

4.1 Steps Taken to Identify Historic Properties

The Golden Gate Bridge historic property was determined eligible for listing in the NRHP in 1980 and it is a historic property for the purposes of Section 106 compliance. The Bridge has been the subject of extensive documentation and historical analysis since the time of its construction (1933-1938), as well as numerous published accounts and other popular media, and has been recognized by several local, state, and federal programs. It was designated as California State Historic Landmark No. 974 in 1990, which automatically listed the property in the California Register of Historical Resources (CRHR). The Golden Gate Bridge and its approaches have been documented by the Historic American Engineering Record (HAER No. CA-31), and the Bridge has been recognized by the American Society of Civil Engineers on at least three separate occasions: as one of the Seven [engineering] Wonders of the World in 1955, as a National Civil Engineering Landmark in 1984, and as a Monument of the Millennium in 2001. The Golden Gate Bridge is also San Francisco City Landmark No. 222. Currently, Caltrans lists the Bridge as Category 2 (eligible for listing in the NRHP) in its Caltrans Historic Bridge Inventory. The Golden Gate Bridge is also a historical resource for the purposes of California Environmental Quality Act (CEQA).

The most detailed previous studies are listed below. Copies of the Office of Historic Preservation Historic Properties Data File and Caltrans Historical Significance – State Agency Bridge sheets for the various Golden Gate Bridge structures are provided in Appendix D. The list of all reference materials consulted for this FOE appears in Section 8.

2 National Park Service, “National Historic Landmark Nomination for the Golden Gate Bridge,” August 13, 1997; California Office of Historic Preservation, “Directory of Properties in the Historic Property Data File for San Francisco County,” as of October 2010, on file with Northwest Information Center; Caltrans, “Structure & Maintenance Investigation, Historical Significance–State Agency Bridges,” June 2011; Homme, FHWA, “Request for Determination of Eligibility for the Golden Gate Bridge,” 1979; Stephen Mikesell, “HRER Approaches to the Golden Gate Bridge,” 1987; Snyder, Memorandum to SHPO re: Presidio Viaduct and Marina Viaduct, April 3, 1990; and Nissley at ACHP, Letter to Markle at FHWA, re: Marina Viaduct Seismic Retrofit, 1994. Caltrans and California Office of Historic Preservation records indicate that the Golden Gate Bridge has been the subject of historic evaluation for many years. The Keeper of the National Register determined the bridge to be eligible for the NRHP in 1977 (Status 2S1) and in 1980 a consensus determination was made, resulting in a Status 2S2 (determined eligible for separate listing). Caltrans Architectural Historian Stephen Mikesell evaluated the approaches to the bridge and concluded that the Presidio Viaduct (Bridge 34 0019) and Marina Viaduct (34 0014) were eligible for listing in the NRHP as contributing elements of the Golden Gate Bridge and SHPO concurred.

4.2 Description of Historic Property

As part of the compliance effort for this Project, JRP compiled and reviewed previous studies of the Golden Gate Bridge, as well as Section 106-related correspondence. The most recent update of the Golden Gate Bridge historic property was a Historic Property Survey Report (HPSR) that JRP prepared in 2008 for the Golden Gate Bridge Physical Suicide Deterrent System Project. Under that study, JRP inventoried and evaluated the Golden Gate Bridge historic property to update the record of its current appearance, update identification of contributing elements, and update the description of its character-defining features since the time of its previous inventory in 1993. As discussed in detail on the updated DPR 523 form (attached as Appendix C), the Bridge historic property includes as contributing elements the main Golden Gate Bridge structure (Caltrans Bridge 27 0052), the Toll Plaza Undercrossing (Bridge 34 0069), the southern approach road (also known as the Presidio Approach Road, or Doyle Drive) and its two viaducts, the Marina Viaduct (Bridge 34 0014) and Presidio Viaduct (34 0019), and the Round House Gift Center.

The Golden Gate Bridge historic property was originally determined eligible for listing in the National Register of Historical Places in 1980, OHP Status Code 2. The consensus determination in 1980 found the Bridge significant, at the national level, under NRHP Criterion A, B, and C, with a period of significance of 1933-1938. Subsequent detailed analysis by the National Park Service in the 1997 NHL nomination proposed significance under Criterion C only, citing the Bridge’s importance as an important example of: suspension bridge technology, Art Deco design, and the work of more than one master engineer and architect. The Criterion C significance appears to be accurate and was proposed as the correct designation in the updated evaluation of the property presented in the Historic Property Survey Report for the Physical Suicide Deterrent System Project.

The Golden Gate Bridge is one of the most well-known, internationally recognized, and frequently visited suspension bridges in the world. Combining Art Deco and Streamline Moderne design with advanced engineering technologies, and situated against a dramatic coastal backdrop, the Bridge has been described as an environmental sculpture and is widely noted for its harmonious blending of the natural and built environment. The extraordinary setting

4 This National Landmark Nomination has not been accepted and the Bridge is not yet listed as an NHL.
intensifies the visual power of the Bridge.7 The 1993 survey and the 1997 nomination cited above identified the main Bridge structures from the Toll Plaza area on the south, to the Marin Approach Viaduct and North Abutment on the north, as the primary element of the Golden Gate Bridge historic property. The major components of the Golden Gate Bridge are the main suspension span, suspender ropes and suspension cables, four pylons, Fort Point Arch, and two of each of the following structures: side suspension spans, anchorages, piers, towers, and North and South viaducts (see Plate 5 below).

The Bridge has a symmetrical design. Vertical structural elements on the horizontal plane are generally based on increments of 12 ½ feet. For example, the outside handrail posts and the public safety rail posts are aligned at a spacing of 12 ½ feet. Additionally, light posts are 150 feet apart (12 x 12 ½ feet), and the suspender ropes are 50 feet apart (4 x 12 ½ feet). Belvederes (24 widened areas located on both the east and west sidewalks) are 12 ½ feet long and centered between two suspender ropes. Maintenance gates on the public safety railing are spaced at 150 feet (12 x 12 ½ feet) and are aligned with the light posts. Vertical members of the stiffening truss are spaced at 25 feet and are aligned with the suspender ropes. Plate 5 below shows a profile view of a section of the Bridge illustrating the relationship of these structural elements.

![Plate 5. Main Elements of the Golden Gate Bridge](image)

(Original: MacDonald Architects, “HASR: Seismic Retrofit Project, Golden Gate Bridge,” [1995]).

The 1997 nomination identified the southern approach road (also known as the Presidio Approach Road, or Doyle Drive), and its two viaducts (Bridges 34 0014 and 34 0019), as contributing elements of the Bridge, as well as the Round House Gift Center (originally a restaurant and traveler comfort station). The nomination considered the entire Doyle Drive feature to be a contributing element of the Golden Gate Bridge. The Toll Plaza Undercrossing (34 0069) is a contributing element of the property because it is an original component of the

Bridge (Plate 6). The tunnel-like undercrossing is a single span concrete tee beam structure designed to allow vehicular traffic and pedestrians to cross from one side of the roadway to the other underneath the Toll Plaza using surface streets. The west side of the undercrossing is directly underneath the Administration Building (a non-contributing element because of integrity loss, according to both the 1993 and 1997 surveys), as shown in below. The rest of the undercrossing carries the lanes of traffic as they pass through the toll booths. Caltrans bridge logs indicate that the undercrossing is about 33’ long and 291’ wide, and that it has not undergone major widening or extension since it was completed in 1936. Finally, the railings and original light standards were identified as character-defining elements of the Bridge.8

Plate 6. Detail of 1937 photograph showing Toll Plaza and Bridge Administration Building during Bridge construction, with west entrance to the Toll Plaza Undercrossing (34 0069) visible underneath the southern end of the building. (Permission pending: San Francisco Historical Photograph Collection, San Francisco Public Library)

The primary character-defining elements and decorative features of the Bridge and its contributing elements are its major structural elements (the suspension bridge anchorages, pylons, piers, towers, main span and side spans), the plate girder bridge, arch bridge, and truss bridges of the approaches, the southern approach roadway (Doyle Drive), main suspension cables, Round House, and Toll Plaza Undercrossing. The Art Deco / Moderne design of these structures is a high ranking character-defining feature of all of these structures and their use within the overall Bridge. The railings from the original construction and railings replicated to match original, as well as the layout of the sidewalks – width and construction around piers and pylons – that allow pedestrian use are essential character-defining features of the property. Although the sidewalks have been extended and widened, they continue to serve as important, human-scale features of the Bridge that make it readily accessible to the commuting and visiting public, functions intentionally included by Chief Engineer Joseph B. Strauss and Consulting Architect Irving F. Morrow.9

9 Irving F. Morrow to Ernest Born, September 26, 1938, and “Physical Characteristics of the Golden Gate Bridge compiled by Joseph B. Strauss, Chief Engineer,” typescript, received January 28, 1933, “Irving F. Morrow (and Gertrude C. Morrow) Collection, 1914-1958,” Project III.14, Environmental Design Archives, UC Berkeley; Consulting Board of Engineers for the Golden Gate Bridge, Minutes, July 16 and 17, 1934, Charles Derleth Papers, Box 1, Water Resources Center Archives, UC Berkeley.
Other character-defining features that are important in conveying the artistic value of the property are the electroliers, or light standards, the International Orange paint color, and remaining concrete railings. The previous evaluations specifically identified the light standards and pedestrian railings as contributing elements of the property, and both were designed by consulting architect Irving F. Morrow. “In addition to recommending the red vermillion (known as “international orange”) paint color that still graces the Bridge today, Mr. Morrow was largely responsible for the architectural enhancements that define the Bridge’s Art Deco form. The pedestrian railings were simplified to modest, uniform posts placed far enough apart to allow motorists an unobstructed view. The electroliers (light posts) took on a lean, angled form and decorative cladding was added to the portal bracing of the main towers.”

Several non-contributing features were identified in the 1993 and 1997 studies. These included: the Sausalito Lateral (original approach to the north side of the Bridge), which had not been included in the final scope of work for the original Bridge project, and was not designed, built, or funded by the team that was responsible for the rest of the Golden Gate Bridge; the Toll Plaza Building (toll booth structures); the clock on the toll booth canopy (1949); the orthotropic steel plate roadbed installed to replace the original reinforced concrete roadway (1982-1985); as well as modern bus shelters, phone booths, light standards, and signs. In addition, during the early 1980s the North and South approach viaducts underwent a substantial seismic upgrade.

Overall, the Golden Gate Bridge has lost some historic integrity through the course of seventy years of operation, maintenance, and improvements. Nevertheless, the property retains its primary character-defining features, and the property clearly conveys its significance as an excellent example of the incorporation of architectural styling to 1930s state-of-the-art engineering, as clarified by the updated inventory and evaluation provided in the HPSR recently prepared for the Physical Suicide Deterrent System Project (2008), and as recognized by the state, local, and federal historic preservation programs described therein.

5. APPLICATION OF THE CRITERIA OF ADVERSE EFFECT

5.1 Criteria of Adverse Effect

This FOE assesses whether the Golden Gate Bridge Moveable Median Barrier Project will have an adverse effect on the Golden Gate Bridge historic property. An adverse effect is an alteration to the characteristics of a historic property that qualify it for inclusion in or eligibility for the NRHP. Under NHPA Section 106, as codified in 36 CFR 800.4(d)(2), if there are historic properties which may be affected by a federal undertaking, the agency official shall assess adverse effects. Adverse effects will be analyzed in accordance with the Criteria of Adverse Effect defined in 36 CFR 800.5, below.

(1) **Criteria of adverse effect** (36 CFR 800.5 (a)(1)). An adverse effect is found when an undertaking may alter, directly or indirectly, any of the characteristics of a historic property that qualify the property for inclusion in the National Register in a manner that would diminish the integrity of the property's location, design, setting, materials, workmanship, feeling, or association. Consideration shall be given to all qualifying characteristics of a historic property, including those that may have been identified subsequent to the original evaluation of the property's eligibility for the National Register. Adverse effects may include reasonably foreseeable effects caused by the undertaking that may occur later in time, be farther removed in distance or be cumulative.

(2) **Examples of adverse effects.** Adverse effects on historic properties include, but are not limited to:

(i) Physical destruction of or damage to all or part of the property;

(ii) Alteration of a property, including restoration, rehabilitation, repair, maintenance, stabilization, hazardous material remediation, and provision of handicapped access, that is not consistent with the Secretary's Standards for the Treatment of Historic Properties (36 CFR part 68) and applicable guidelines (see below);

(iii) Removal of the property from its historic location;

(iv) Change of the character of the property's use or of physical features within the property's setting that contribute to its historic significance;

(v) Introduction of visual, atmospheric or audible elements that diminish the integrity of the property's significant historic features;

(vi) Neglect of a property which causes its deterioration, except where such neglect and deterioration are recognized qualities of a property of religious and cultural significance to an Indian tribe or Native Hawaiian organization; and

(vii) Transfer, lease, or sale of property out of Federal ownership or control without adequate and legally enforceable restrictions or conditions to ensure long-term preservation of the property's historic significance.\(^\text{13}\)

5.2 Application of the Criteria of Adverse Effect

This section assesses the effects of the proposed Project on the Golden Gate Bridge historic property, which has been determined eligible for listing in the NRHP. The assessment provided below identifies the direct, indirect, and cumulative effects as defined in 36 CFR 800.5 (a)(2).

Summary of Effects on Golden Gate Bridge

<table>
<thead>
<tr>
<th>Aspects of Historic Integrity</th>
<th>Project Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Not Adverse</td>
</tr>
<tr>
<td>Design</td>
<td>Not Adverse</td>
</tr>
<tr>
<td>Setting</td>
<td>Not Adverse</td>
</tr>
<tr>
<td>Materials</td>
<td>Not Adverse</td>
</tr>
<tr>
<td>Workmanship</td>
<td>Not Adverse</td>
</tr>
<tr>
<td>Feeling</td>
<td>Not Adverse</td>
</tr>
<tr>
<td>Association</td>
<td>Not Adverse</td>
</tr>
</tbody>
</table>

None of the aspects of the Bridge’s historic integrity will be adversely affected by the Project. The Project will not affect the Bridge’s historic integrity of location, as it will not cause the structure to be moved.

The Project would not have a direct adverse effect on the Golden Gate Bridge historic property because the integrity of its original design, materials, and workmanship would not be diminished. Once installed along U.S. 101 across the Golden Gate Bridge, the MMB would rest, unattached, on the surface of the roadway, held in place by its own weight and friction. Additionally, the roadbed itself, an orthotropic steel plate installed to replace the original reinforced concrete roadway, is a modern element (1982-1985) and not a character-defining feature of the Bridge historic property. Likewise, the four toll booths on the south end of the Bridge and existing permanent median barrier and vegetated median strip north of the Bridge that would be removed to accommodate the MMB system are all modern, non-character-defining features. None of the Project elements, therefore, would alter the property's use or character-defining physical features.

Nor would the Project have an indirect adverse effect on the Golden Gate Bridge property. While the Project would introduce non-historic visual elements to the Golden Gate Bridge, this would not significantly diminish its integrity of setting, feeling, and association because the property will retain its overall aesthetic expression and historic sense of a particular period of time – specifically when it was constructed in the 1930s. Nor will the Project impact the physical environment surrounding the historic property. As shown in the visual simulations below (Plates 7 through 18), the MMB and its related elements (namely, the BTMs and three reconstructed toll booths) would be visible from various vantage points on and near the Bridge. However, the visual impact of these elements, particularly when compared to the overall scale of the Bridge structure, will be minimal. The barrier, which would be one foot wide and less than three feet tall, would be visible as a streamlined low solid wall running the length of the Bridge’s roadway. The MMB would be visually subordinate to the dominant features of the Bridge, such as the two towers, suspension cables, trusses, and pedestrian walkways. Additionally, while the barrier
would result in a minor increase in visual bulk, it would replace the visual clutter associated with the existing median barrier in areas where it would replace the yellow pylons.

Also, as shown in Plates 12 and 14, from the vantage point of a pedestrian or motorist crossing the Bridge, the barrier would partially block views of the roadway on the opposite side of the viewer. As discussed above, the roadway itself is not a contributing feature. The profile of the barrier is low enough that sightlines to the Bridge’s character-defining features (i.e., suspension cables, pedestrian walkways, railings), as well as sightlines from the Bridge to the surrounding viewshed, would be unimpeded.

Finally, removal of four existing toll booths and reconstruction of three toll booths of the toll booth plaza and presence of the BTMs would not constitute an indirect adverse impact to the Bridge property’s setting, feeling, or association. The BTMs, which would have a periodic presence on the Bridge during operations, and would be stored within the U.S. 101 right-of-way the remainder of the time, are roughly equivalent in size and shape to cargo trucks that cross the Bridge on a daily basis (Plate 16). While the new toll booths would be slightly (three feet) taller than the toll booths that they are intended to replace, overall the new construction would be compatible in both design and scale to the existing toll booth plaza (Plates 17 and 18). The visual presence of these new Project elements to the historic property would be virtually negligible, especially when compared to the overall massing of the Golden Gate Bridge and all of its contributing elements.14

Construction of the Project would not cause cumulative adverse effects to the Golden Gate Bridge historic property. Cumulative effects analysis takes into consideration that “adverse effects may include reasonably foreseeable effects caused by the undertaking that may occur later in time, be farther removed in distance, or be cumulative” (36 CFR 800.5 (a)(1)). Previous projects at the Bridge, such as the Public Safety Railing Project and the Seismic Retrofit Project for the Golden Gate Bridge were subject to Section 106 effects analysis and CEQA impacts analysis. The Seismic Retrofit Project, currently underway, includes modification to the outside handrail on the west side of the Bridge between the two main towers and the installation of the wind fairings. No adverse effects to character-defining features, or the qualities that qualify the Golden Gate Bridge for listing in the NRHP, were identified for either project.15 The possible future project known as the Golden Gate Bridge Physical Suicide Deterrent System Project would cause an adverse effect to the Bridge, but because the MMB Project would not cause

14 These findings are consistent with the Visual Impact Assessment prepared for this Project, which applies different evaluation criteria than this FOE, but nonetheless arrives at a similar conclusion: “As discussed in this document, the MMB, a new feature, would not be out of character or visually at odds with existing roadway elements and structures in the vicinity. The level of change to visual quality and character would be minor, minimizing any potential for considerable contribution to cumulative impacts…The proposed project’s cumulative impact would be less than significant because proposed physical changes to the area would be minor and consistent with the existing features of the area.” See: Barr, “Draft Visual Impact Assessment, Golden Gate Moveable Median Barrier Project,” July 26, 2011, 64-65.

adverse effects, the MMB Project would have no cumulative effect on the Bridge property. SHPO concurred with the findings of the previous studies, and the previous determination that the Golden Gate Bridge is eligible for listing in the NRHP remains valid.\footnote{JRP Historical Consulting, “Historic Property Survey Report, Golden Gate Bridge Physical Suicide Deterrent System Project,” May 2008; Golden Gate Bridge, Highway & Transportation District, “Final Environmental Impact Report Released for Golden Gate Bridge Physical Suicide Deterrent System Project,” January 22, 2010, accessed online on September 12, 2011, at Project website: http://goldengate.org/news/bridge/suicidebarrier_feir.php.}

No other reasonably foreseeable adverse effects of future projects have been identified.

In sum, the proposed Golden Gate Bridge Moveable Median Barrier Project would not alter, directly or indirectly, any of the characteristics of the Golden Gate Bridge historic property that qualify it for inclusion in the National Register. The undertaking, therefore, would not have an adverse affect on the property.
Plate 7. View from Marin Headlands, facing south (existing conditions)

Plate 8. View from Marin Headlands, facing south (visual simulation)
Plate 9. View from Vista Point, facing south (existing)

Plate 10. View from Vista Point, facing south (simulation)
Plate 11. View from pedestrian walkway along Bridge, facing southwest (existing)

Plate 12. View from pedestrian walkway along Bridge, facing southwest (simulation)
Plate 13. View while driving across Bridge, facing southeast (existing)

Plate 14. View while driving across Bridge, facing southeast (simulation).
Plate 15. View from toll plaza, facing northwest (existing)

Plate 16. View from toll plaza, facing northwest (simulation)
Plate 17. View of toll plaza from Round House Gift Center, facing south (existing)

Plate 18. View of toll plaza from Round House Gift Center, facing south (simulation)
6. ALTERNATIVES CONSIDERED BUT REJECTED

6.1 Background

As early as the 1980s, the concept of installing a moveable barrier on the Bridge has been analyzed by various entities. The District conducted an extensive study of a wider (two-foot-wide) MMB technology in the 1980s and, due to the unique characteristics and conditions represented by the Bridge and its approaches, concluded that installation of the proposed two foot wide MMB would be infeasible. With the emergence of a narrower one-foot wide barrier in 1996, the District immediately launched a comprehensive analysis that led to the conclusion that, with some operational trade-offs, a barrier will virtually eliminate crossover accidents. In 1999, the District initiated a preliminary engineering evaluation that assessed the technical and operational impacts that would result from the installation of a moveable barrier on the Bridge.17

6.2 Alternatives Development and Evaluation Process

In June 2010, AECOM prepared the “Draft Alternative Technology Comparison, Golden Gate Bridge Moveable Median Barrier Study,” the purpose of which was to identify and evaluate alternative moveable barrier technologies that could be implemented on the Bridge, and recommend a preferred technology. The study presented nine options and evaluated them on the District’s requirements and site constraints present for the installation of such a barrier system on the Golden Gate Bridge. The selected system must meet the following requirements for implementation on the Bridge:18

- **Flexibility:** The barrier needs to be able to switch to/from any of the following lane configurations: 4 southbound lanes and 2 northbound lanes; 3 southbound lanes and 3 northbound lanes; or 2 southbound lanes and 4 northbound lanes.
- **Operations Feasibility:** The barrier needs to quickly and efficiently shift the travel lane configuration (up to three times a day) into the configurations described above to accommodate the daily variations in traffic volumes between Marin and San Francisco.
- **Safety:** The barrier must satisfy the National Cooperative Highway Research Program Report 350 crash test.
- **System Dimensions:** The existing width of the Bridge deck (62 feet) limits the width available for the selected system. The barrier cannot exceed 12” without reducing travel lanes to unacceptably narrow widths. Barriers separating opposing directions of traffic should be at least 32” high to meet minimum height requirements specified in the Caltrans Standard Plans.
- **Accuracy:** The existing Bridge cross-section consists of two 11 foot outer lanes and four 10 foot inner lanes for a total of 62 feet from curb to curb. Installing a barrier on this cross section would reduce the lane widths; therefore, the lateral shift from one lane

18 The following bullets provide a summary of the Bridge District’s project requirements. For a full discussion, see: AECOM Transportation, “Draft Alternative Technology Comparison, Golden Gate Bridge Moveable Median Barrier Study, Prepared for the Golden Gate Bridge Highway and Transportation District, Federal Project Number STPL-6003(037),” June 30, 2010.
configuration to another requires a precise level of accuracy so the travel lanes on each side of the barrier remain as wide as possible.

- **Lane Tapers:** The barrier system installed on the Bridge must be able to perform the required lane tapers necessary to reduce travel lanes to the proper number of lanes available on the Bridge. One of the District’s goals as part of this Project is to implement a technology that can also perform the lane taper in a safe manner that does not require exposing crew to traffic as currently occurs.

- **Emergency Operations:** The barrier system must not hinder the ability of emergency responders to access an accident, and in doing so, it must not compromise the safety of those responding to the accident.

- **Environmental Effects:** The barrier system must not have any significant adverse impacts to the environment.

- **Structural Performance:** The barrier system must not affect structural soundness of the Golden Gate Bridge.

- **Budget:** The barrier system must meet the Bridge, Highway and Transportation District’s budget of $25 million, which includes engineering, construction, management, and soft costs.

6.3 Alternatives Considered and Rejected

After researching several median barrier technologies, AECOM concluded that Alternative #1: Steel Reactive Tension System Quickchange Moveable Barrier (SRTS-12”QMB), the system contemplated for this study, is the only alternative that meets the flexibility, dimensional, and safety requirements for installation and operation on the Golden Gate Bridge. As summarized in the table below, none of the other alternatives met all the requirements for use on the Golden Gate Bridge.
Summary of Findings: Alternative Technology Comparison

<table>
<thead>
<tr>
<th>System</th>
<th>Flexibility</th>
<th>Operations Feasibility</th>
<th>Safety</th>
<th>System Dimensions</th>
<th>Accuracy</th>
<th>Lane Tapers</th>
<th>Emergency Operations</th>
<th>Environmental Effects</th>
<th>Structural Performance</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATIVE 1 12" Quickchange Moveable Barrier</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 2 13" Quickchange Moveable Barrier</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 3 18" Quickchange Moveable Barrier</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 4 24" Quickchange Moveable Barrier</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 5 Swifftgate attached to permanent barrier</td>
<td>○</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 6 Qwick Kurb</td>
<td>✔</td>
<td>○</td>
<td>○</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 7 Low Profile</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 8 Road Runner</td>
<td>✔</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ALTERNATIVE 9 No Build</td>
<td>✔</td>
<td>✔</td>
<td>○</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

LEGEND
- ✔ meets system requirement for implementation on the Golden Gate Bridge
- ○ does not meet system requirement for implementation on the Golden Gate Bridge
7. CONCLUSIONS

The District, in cooperation with Caltrans and the FHWA, is proposing the Golden Gate Bridge Moveable Median Barrier Project [Federal Project #: STPL-6003(037)]. The Project proposes installation of a moveable median barrier on the Golden Gate Bridge that would enhance traffic safety by providing a physical barrier to separate opposing directions of traffic.

There is one historic property within the Project Area: the Golden Gate Bridge. In addition to the Bridge itself, this historic property also includes the Round House Gift Center, the Toll Plaza Undercrossing, and the southern approach road (also known as the Presidio Approach Road, or Doyle Drive) and its two viaducts, which are contributing elements. The main Golden Gate Bridge structure is Caltrans Bridge 27 0052, the undercrossing is Bridge 34 0069, and the southern approach viaducts are Bridges 34 0014 and 34 0019. The Golden Gate Bridge historic property was determined eligible for listing in the National Register of Historical Places in 1980, as described in Section 4.

Pursuant to Section 106 PA Stipulation X.B(1) and 36 CFR 800.5(c), the present study concludes that the proposed Golden Gate Bridge Moveable Median Barrier Project [Federal Project # STPL-6003(037)] would result in no adverse effect to the Golden Gate Bridge historic property. FHWA seeks SHPO concurrence with this finding.
8. REFERENCES

Stephen Mikesell, “HRER Approaches to the Golden Gate Bridge [Presidio Viaduct (Bridge 34 0019) and Marina Viaduct (34 0014)],” 1987.

Derleth, Charles. “Charles Derleth Papers,” manuscript collection. Consulting Board of Engineers for the Golden Gate Bridge, Box 1. Water Resources Center Archives, University of California, Berkeley.

San Francisco Planning Department, Landmarks Preservation Advisory Board, Golden Gate Bridge, case file for Landmark No. 222, 1999.

9. PREPARERS’ QUALIFICATIONS

Rebecca Meta Bunse, JRP Partner and MA in History (Public History, California State University, Sacramento, 1996), served as primary historian and manager for this Project. Ms. Bunse has more than twenty-one years experience working as a consulting historian on a wide variety of historical research and cultural resource management projects as a researcher, author, and project manager. Senior Historian Bryan Larson (MA Public History, California State University, Sacramento, 2005) prepared the report. Mr. Larson has been with JRP since 1998.

Based their level of education and experience, Ms. Bunse and Mr. Larson qualify as historians and architectural historians under the United States Secretary of the Interior’s Professional Qualification Standards (as defined in 36 CFR Part 61), and meet the Professionally Qualified Staff Standards for these disciplines in the Section 106 Programmatic Agreement (Section 106 PA), Attachment 1.
APPENDICES
APPENDIX A: Figures

Project Location Map

Project Area Map
Figure 2: Limits of the Project Area

Golden Gate Bridge Moveable Median Barrier

Northern Project Boundary

Southern Project Boundary

San Francisco Bay

Source: ESRI; AECOM

10/2011
APPENDIX B: Project Correspondence

Caltrans Letter, March 23, 2010

Notification Letters and Distribution List
March 23, 2010

Jeffrey Y.F. Yee
Golden Gate Bridge Highway and Transportation District
P.O. Box 9000, Presidio Station
San Francisco, Ca, 94129-0601

Your ref: STPL- 6003 (037)

Dear Mr. Jeffrey Yee:

Our office is in receipt of the Office of Cultural Resources’ (OCRS) assessment on the Section 106 requirements for the Golden Gate Bridge Removable Median Barrier and has signed the Preliminary Environmental Studies (PES) Form. Similarly, the District Local Assistance Engineer (DLAE) and the Environmental Planner Designee have affixed their signatures to the document. The environmental scoping is therefore complete.

The following studies are required as per the PES:
1. Technical Study-Traffic Study (see attached letter regarding Traffic Study Notes for more information)
2. Technical Study- Water Quality (address in NESMI)
3. Technical Study-Biological Resources, Natural Environmental Studies Minimal Impact (NESMI)
4. Technical Memorandum- Equipment Staging (temporary and permanent staging areas as well as mapping for both)
5. Technical Study-Section 4(f), De minimis (for the Golden Gate Bridge and also address temporary occupancy for the for the Golden Gate Park)
6. Technical Study-Visual Impact Assessment (include simulations for the barriers and trucks)
7. Technical Study- Cultural Resources, Finding of Effect (See comments below)

The required Finding of Effect report should explain the physical scope of the project and show that no properties other than the bridge itself will be affected. You will not need to produce an APE map. An APE map has specific requirements for signatures that are not necessary in this situation (the APE map defines the area to be studied for the HRER and the archaeological survey report, which are not needed for this project). The report, however, will need to include some form of mapping that shows this. You will not need to produce an HPSR or HRER.

Please prepare those studies at your earliest convenience and submit them to our office for review. If you have any questions regarding this letter, please contact Susan Tse at (510) 286-5743.

Sincerely,

Boris Deunert, Ph.D
Senior Environmental Planner
Office of Local Assistance

cc: I.A files

"Caltrans improves mobility across California"
Distribution List for Historic Resources Interested Parties

Federal, State, & Local Government Agencies:

Carol Legard (Federal Highway Administration)
Katry Harris (National Park Service)
Katharine R. Kerr (Presidio Trust)
Advisory Council on Historic Preservation
Compliance Office
1100 Pennsylvania Avenue NW, Suite 809, Old Post Office Building
Washington, DC 20004

Milford Wayne Donaldson, State Historic Preservation Officer
California Office of Historic Preservation
1725 23rd Street # 100
Sacramento, CA 95816

Abby Sue, Acting Chief of Cultural Resources
Golden Gate National Recreation Area
National Park Service
Fort Mason, Bldg. 201
San Francisco, CA 94123

Craig Middleton, Executive Director
The Presidio Trust
34 Graham Street
PO Box 29052
San Francisco, CA 94129

Robbyn L. Jackson, Chief of Cultural Resources & Museum Management
National Park Service, Pacific West Region Office
1111 Jackson St., Ste. 700
Oakland, CA 94607

Tilly Chang, Deputy Director for Planning
Glenn Davis, Chair, Citizens Advisory Committee
San Francisco County Transportation Authority
100 Van Ness Ave, 26th floor
San Francisco, CA 94102

Tina Tam, Senior Preservation Planner
Tim Frye, Acting Preservation Coordinator
San Francisco Planning Department
Historic Preservation Commission
1650 Mission Street, Suite 400
San Francisco, CA 94103
David Alumbaugh, Manager
Joshua Switzky, Built Environment Lead
San Francisco Planning Department
City Design Group
1650 Mission Street, Suite 400
San Francisco, CA 94103

Brian Crawford, Director
County of Marin
Community Development Agency
3501 Civic Center Dr., Rm #308
San Rafael, CA 94903

Other Interested Parties:
Margie O'Driscoll, Executive Director
American Institute of Architects
Preservation Committee
130 Sutter Street, Suite 600
San Francisco, CA 94102

American Society of Civil Engineering
Historic Civil Engineering Landmark Program
Carol Reese
1801 Alexander Bell Drive
Reston, VA 20191-4400

Anne T. Kent California Room
Civic Center Branch, Marin County Free Library
3501 Civic Center Drive, Room 427
San Rafael, CA 94903

Art Deco Society of California
100 Bush Street, Suite 511
San Francisco, CA 94104

Christopher Layton, President
California Heritage Council
P.O. Box 475046
San Francisco, CA 94147

Mary Morganti, Interim Executive Director
California Historical Society
678 Mission Street
San Francisco, CA 94105

Cindy Heitzman, Executive Director
California Preservation Foundation
5 Third St., Ste 424
San Francisco, CA 94103
Alison Moore, Archivist
CSAA Archives & Historical Services
150 Van Ness Ave.
San Francisco, CA 94102

Gretchen Hilyard, President
DOCOMOMO US/Northern California
P.O. Box 29226
San Francisco, CA 94129-0226

Fort Point & Presidio Historical Association
P.O. Box 29163, Presidio Station
San Francisco, CA 94129

Mark Buell, Chair
Golden Gate National Parks Conservancy
Building 201, Fort Mason
San Francisco, CA 94102

Marin Heritage
P.O. Box 1432
San Rafael CA 94915

Anthea M. Hartig, Ph.D., Director
Western Office, The Hearst Building
National Trust for Historic Preservation
5 Third Street, Suite 707
San Francisco, CA 94103

Northern California Chapter Society of Architectural Historians
c/o Rich Sucre, Treasurer
1000 Sansome Street, Ste. 200
San Francisco, CA 94111

San Francisco Architectural Heritage
2007 Franklin Street
San Francisco, CA 94109

Will Travis, Executive Director
Joseph LaClair, Chief Planner
San Francisco Bay Conservation and Development Commission
50 California Street, Suite 2600
San Francisco, CA 94111

San Francisco History Association
PO Box 31907
San Francisco, CA 94131

Kurt Nystrom, Chief Operating Officer and Chief Financial Officer
San Francisco Museum and Historical Society
PO Box 420470
San Francisco, CA 94142
September 30, 2011

Carol Legard (Federal Highway Administration)
Katry Harris (National Park Service)
Katharine R. Kerr (Presidio Trust)

Advisory Council on Historic Preservation
Compliance Office
1100 Pennsylvania Avenue NW, Suite 809, Old Post Office Building
Washington, DC 20004

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39" x 12" x 32" (LxWxH). The units would have a 24"-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the
median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza. The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Margie O'Driscoll, Executive Director
American Institute of Architects
Preservation Committee
130 Sutter Street, Suite 600
San Francisco, CA 94102

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of inter-linked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24” wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]
Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

American Society of Civil Engineering
Historic Civil Engineering Landmark Program
Carol Reese
1801 Alexander Bell Drive
Reston, VA 20191-4400

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of inter-linked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored...
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Anne T. Kent California Room
Civic Center Branch, Marin County Free Library
3501 Civic Center Drive, Room 427
San Rafael, CA 94903

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing *Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge* in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39"x12"x32" (LxWxH). The units would have a 24"-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Art Deco Society of California
100 Bush Street, Suite 511
San Francisco, CA 94104

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza. The four existing eastern most booths will be removed and three new booths reconstructed. The
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location
Golden Gate Bridge Moveable Median Barrier

Source: EIR, USGS, AECOM
06/2010

Project Location
September 30, 2011

Christopher Layton, President
California Heritage Council
P.O. Box 475046
San Francisco, CA 94147

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39” x 12” x 32” (L x W x H). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge
Moveable Median Barrier

Source: ESRI, USGS, AECOM
06/2010
September 30, 2011

Mary Morganti, Interim Executive Director
California Historical Society
678 Mission Street
San Francisco, CA 94105

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Milford Wayne Donaldson, State Historic Preservation Officer
California Office of Historic Preservation
1725 23rd Street # 100
Sacramento, CA 95816

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Cindy Heitzman, Executive Director
California Preservation Foundation
5 Third St., Ste 424
San Francisco, CA 94103

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Brian Crawford, Director
County of Marin
Community Development Agency
3501 Civic Center Dr., Rm #308
San Rafael, CA 94903

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location
Golden Gate Bridge
Moveable Median Barrier

Source: ESR, USCS, AECOM
06/2010
September 30, 2011

Alison Moore, Archivist
CSAA Archives & Historical Services
150 Van Ness Ave.
San Francisco, CA 94102

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of inter-linked high strength steel structures filled with concrete, each unit of which measures approximately 39” x 12” x 32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge
Moveable Median Barrier

Project Location

Source: ESRI, USGS, AECOM

06/2010
September 30, 2011

Gretchen Hilyard, President
DOKOMOMO US/Northern California
P.O. Box 29226
San Francisco, CA 94129-0226

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location
September 30, 2011

Fort Point & Presidio Historical Association
P.O. Box 29163, Presidio Station
San Francisco, CA 94129

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza. The four existing eastern most booths will be removed and three new booths reconstructed. The
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MovableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Mark Buell, Chair
Golden Gate National Parks Conservancy
Building 201, Fort Mason
San Francisco, CA 94102

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge
Moveable Median Barrier

Source: EBR, USGS, AECOM
06/2010
September 30, 2011

Abby Sue, Acting Chief of Cultural Resources
Golden Gate National Recreation Area
National Park Service
Fort Mason, Bldg. 201
San Francisco, CA 9412

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge Moveable Median Barrier

Source: ESRI, USGS, AECOM
06/2010
September 30, 2011

Marin Heritage
P.O. Box 1432
San Rafael CA 94915

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Robbyn L. Jackson, Chief of Cultural Resources & Museum Management
National Park Service, Pacific West Region Office
1111 Jackson St., Ste. 700
Oakland, CA 94607

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored...
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Anthea M. Hartig, Ph.D., Director
Western Office, The Hearst Building
National Trust for Historic Preservation
5 Third Street, Suite 707
San Francisco, CA 94103

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored...
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Northern California Chapter Society of Architectural Historians
c/o Rich Sucre, Treasurer
1000 Sansome Street, Ste. 200
San Francisco, CA 94111

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39″x12″x32″ (LxWxH). The units would have a 24″-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MovableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

San Francisco Architectural Heritage
2007 Franklin Street
San Francisco, CA 94109

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39"x12"x32" (LxWxH). The units would have a 24"-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza. The four existing eastern most booths will be removed and three new booths reconstructed. The
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Will Travis, Executive Director
Joseph LaClair, Chief Planner
San Francisco Bay Conservation and Development Commission
50 California Street, Suite 2600
San Francisco, CA 94111

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

Tilly Chang, Deputy Director for Planning
Glenn Davis, Chair, Citizens Advisory Committee
San Francisco County Transportation Authority
100 Van Ness Ave, 26th floor
San Francisco, CA 94102

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39” x 12” x 32” (L x W x H). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1:
Project Location

Golden Gate Bridge
Moveable Median Barrier

Source: EIR, USGS, AECOM
06/20/10
September 30, 2011

San Francisco History Association
PO Box 31907
San Francisco, CA 94131

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39"x12"x32" (LxWxH). The units would have a 24"-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza. The four existing eastern most booths will be removed and three new booths reconstructed. The
Notification on Historical Resources
Moveable Median Barrier
September 30, 2011, Page 2

The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1:
Project Location

Golden Gate Bridge
Moveable Median Barrier

Source: ESRI, USGS, AECOM
06/2010
September 30, 2011

Kurt Nystrom, Chief Operating Officer and Chief Financial Officer
San Francisco Museum and Historical Society
PO Box 420470
San Francisco, CA 94142

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the median barrier laterally by one lane. Once the barrier is in place, the BTMs would be stored within the U.S. 101 right-of-way. The Project will also involve modifications to the Toll Plaza.
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MovableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
September 30, 2011

David Alumbaugh, Manager
Joshua Switzky, Built Environment Lead
San Francisco Planning Department
City Design Group
1650 Mission Street, Suite 400
San Francisco, CA 94103

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

[Signature]

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge Moveable Median Barrier

Source: ESRI, USGS, AECOM

06/2010
September 30, 2011

Tina Tam, Senior Preservation Planner
Tim Frye, Acting Preservation Coordinator
San Francisco Planning Department
Historic Preservation Commission
1650 Mission Street, Suite 400
San Francisco, CA 94103

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39"x12"x32" (LxWxH). The units would have a 24"-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, LLC, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge
Moveable Median Barrier

Source: ESR, USGS, AECOM

06/2010
September 30, 2011

Craig Middleton, Executive Director
The Presidio Trust
34 Graham Street
PO Box 29052
San Francisco, CA 94129

Dear Sir or Madam:

The Golden Gate Bridge, Highway and Transportation District (District) is conducting a study of its proposed Golden Gate Bridge Moveable Median Barrier Project (Project) [Federal Project No. STPL-6003(037)]. The proposed Moveable Median Barrier (MMB) would be located along U.S. Highway 101 and extend across the 1.7-mile long Golden Gate Bridge (Bridge) above San Francisco Bay, between the City and County of San Francisco and Marin County. The District, in cooperation with the Federal Highway Administration and California Department of Transportation, is preparing Environmental Studies and Preliminary Design for a Moveable Median Barrier on the Golden Gate Bridge in accordance with the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), and other applicable laws and regulations.

The purpose of the Project is to enhance traffic safety along the Bridge by providing a physical barrier to separate opposing directions of traffic. Currently, northbound (NB) and southbound (SB) traffic along the Bridge is separated by 19-inch tall, 4-inch diameter yellow hollow plastic tubes placed 50 feet and 25 feet apart on tangent and curve sections, respectively. These tubes serve to delineate opposing directions of traffic, but provide no physical protection against crossover collisions. Installation of the MMB would virtually eliminate crossover “head on” accidents on this highway facility.

The District is evaluating one “build” and one “no-build” alternative for the proposed Project. For the build alternative, the District proposes installing a barrier made up of a series of interlinked high strength steel structures filled with concrete, each unit of which measures approximately 39”x12”x32” (LxWxH). The units would have a 24”-wide steel base with four rubber feet and rest on the surface of the roadway. At completion of the Project, the semi-rigid barrier would extend 3.1 miles and could be used in 2 NB / 4 SB, 3 NB / 3 SB, and 4 NB / 2 SB lane configurations. The use of a Barrier Transfer Machine (BTM) is also proposed as part of the Project. The BTM, which would be approximately 9.5 feet wide and 51 feet long, is referred to as a “zipper truck” because the barrier is moved by one lane as the truck travels along the roadway. Two BTMs would be required as part of the Project, as each machine moves the
The four existing eastern most booths will be removed and three new booths reconstructed. The lane widths and heights of the three booths will increase slightly and the booths will be modified for all electronic tolling. The form of the modified Toll Plaza will remain the same.

The no-build alternative represents the future year conditions if no other actions are taken in the study area beyond what is already in place; it is the baseline condition against which all other alternatives are compared. The no-build alternative would continue the existing hollow plastic tube traffic separation measures.

The District has formed a consultant team to perform engineering and environmental technical studies to meet various state and federal environmental requirements. JRP Historical Consulting, L.L.C, is part of this team and is preparing a Finding of Effect (FOE) to assess the potential for the Project to impact historic architectural properties in the study area. Historic properties are potentially eligible, determined eligible, or listed in the National Register of Historic Places. The Bridge and its contributing elements have been determined eligible for listing in the National Register. The Bridge is the only historic property in the study area, which is confined to the U.S. Highway 101 right-of-way (see enclosed Project Area map). The purpose of the FOE is to comply with Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, by applying the Criteria of Adverse Effect, set forth in Title 36 Code of Federal Regulations (CFR) Part 800.5, and following the guidelines for documentation in 36 CFR 800.11.

We are contacting your organization as part of the Section 106 process (36 CFR 800.2). If you or your organization has any concerns regarding this historical resource, please respond in writing to me at the address above citing your concerns within the next thirty days. For additional information, please call me at 415-923-2023, or visit the Project website at http://goldengatebridge.org/projects/MoveableMedianBarrier.php.

Sincerely,

Jeffrey Y. Lee, PE
Project Manager

Enclosure(s): Project Location Map

JYL/crh
2.1.19.1
Figure 1: Project Location

Golden Gate Bridge Moveable Median Barrier

Source: ESR, USGS, AECOM
06/2010
APPENDIX C: DPR 523 Form, Golden Gate Bridge Update (2008)
P1. Other Identifier: Main and side suspension spans = Bridge 27 0052; Toll Plaza Undercrossing = Bridge 34 0069

P3a. Description: This update form has been prepared as part of the Golden Gate Bridge Physical Suicide Deterrent System Project. The Golden Gate Bridge was previously inventoried and evaluated by two survey efforts. MacDonald Architects surveyed the bridge in November 1993 as part of the Historic Architectural Survey Report for the “Proposed Seismic Retrofit Project for the Golden Gate Bridge,” completed in January 1995. Meanwhile, the Western Regional Office of the National Park Service surveyed the property for a National Historic Landmark (NHL) Nomination, completed in August 1997. These two surveys are attached to this update form. This update was prepared to incorporate the extensive information provided in these previous studies, to augment that information with descriptions of changes to the property since the mid 1990s, and to clarify and confirm the contributing elements and historic status of the property within the Focused APE for this project.

The 1993 survey and the 1997 nomination identified the main bridge structures from the Toll Plaza area on the south, to the Marin Approach Viaduct and North Abutment on the north as the primary element of the Golden Gate Bridge historic property. The Golden Gate Bridge itself is thoroughly described in the 1997 nomination and its major components are the main suspension span, suspender ropes and suspension cables, four pylons, Four Point Arch and two of each of the following structures: side suspension spans, anchorages, piers, towers, and North and South viaducts. The 1993 survey identified the Round House Gift Center building as a contributing element of the bridge property, but did not address the approach roads in much detail because they were not within the APE for that project.¹

![Main elements of the Golden Gate Bridge](image)

(Source: MacDonald Architects, “HASR: Seismic Retrofit Project, Golden Gate Bridge,” [1995]).

The 1997 nomination addressed the collective system of structures that comprise the Golden Gate Bridge property and offered a detailed description of its contributing and non-contributing elements. The nomination identified the southern approach road (also known as the Presidio Approach Road, or Doyle Drive), and its two viaducts (Bridges 34 0014 and 34 0019), as contributing elements of the bridge, as well as the Round House Gift Center (originally a restaurant and traveler comfort station). The nomination did not specifically call out the small structure known as the Lincoln Boulevard Undercrossing (Bridge 34 0062), located at the north end of Doyle Drive just south of the Toll Plaza area, but the

¹ The General APE for the current project includes Doyle Drive as a contributing element, while the Focused APE for the current project encompasses the main bridge structures and the Toll Plaza to account for the proposed project footprint and construction staging areas.
Both previous surveys summarized major construction and maintenance projects undertaken through the mid 1990s that altered aspects of the Golden Gate Bridge between its completion in 1937 and 1997. Many modifications were made during that sixty year period, but the NHL nomination noted that none of these modifications had “substantially” affected the historic integrity of the bridge as a historic property. The major projects during that time included: southbound lane widening approaching toll booths in 1947; the widening of both the Marin and San Francisco approach lanes (1950s) and viaducts (early 1960s); replacement of all suspender ropes and their connections between 1973 and 1976; replacement of rivets with bolts on the suspension bridge and approaches; installation of an orthotropic steel plate roadbed (1982-1985) replacing the original reinforced concrete roadway; and addition of lower lateral bracing system and diagonal bracing at North and South viaducts. In addition, during the early 1980s, the North and South approach viaducts underwent a substantial seismic upgrade. Neither of the previous surveys devoted much description to the Vista Point on the Marin County side of the bridge, also known as the Golden Gate Observation Area. California Division of Highways designed and built this facility just east of US 101, adjacent to the North Abutment in 1961-1962. It was not part of the original bridge design and construction project and is not a contributing element of the bridge property.

Other, smaller scale alterations completed between 1937 and 1997 included: addition of a bicycle bridge at the northern pylon in 1968-69 to connect to west sidewalk; removal of original toll booths in the 1980s; and replacement of light fixtures and retention of original light standards (compare light fixture in Figure 2, with Photographs 6-7). Other facilities that underwent changes in the 1980s: the addition of a west sidewalk on the North Approach (there was none originally); east side walk on North Approach widened; North Approach concrete guardrails replaced with metal. This work included removal of “… the structural steel sidewalk framing, including traffic curb, pedestrian railing and electrolizer standards, [for transport] to the Napa yard for sandblasting, rehabilitation, and painting. Corrosion damage to individual frame members and railings was repaired and in some cases badly damaged members were replaced.” About ten years later, the Golden Gate Bridge and Highway Transportation District (District) replaced over one mile (6,557 linear feet) of pedestrian hand

4 San Francisco Historical Photograph Collection, San Francisco Public Library; GGNRA, Cultural Landscape Report for Fort Baker (GGNRA 2005), 20, 44.

railings on the west side of the bridge with replicas of the originals. See Figures 2, 5 and 6, as well as Photographs 5, 6, and 9 for various historic and current views of the sidewalks and railings.⁶

Other than the second, on-going seismic retrofit project that began in 1997, the most extensive new construction on the Golden Gate Bridge since the 1997 nomination was the installation of new Public Safety Railing between the roadway lanes and each sidewalk in 2003 (Photograph 6). This 4.5’ tall railing consists of steel posts set approximately 12.5’ apart horizontal pipe rails with horizontal cables and horizontal pipe rails at the top (Photograph 6). The posts were secured to the extant steel curb barrier between the sidewalk and the roadway. The FasTrak™ project (2000-2005) required modifications to the toll booth canopy, including the removal of the “Stop – Pay Toll” sign that the 1997 nomination considered to be a contributing feature of the bridge. The sign was removed in 2000, and in 2003 the toll canopy roof was replaced and the 1949 neon clock, which had ceased to function and was not repairable, was replaced with a replica (Photograph 8).⁷

The District is currently conducting a three-phase seismic retrofit program on the Golden Gate Bridge that began in 1997. Phase 1, completed in 2002, retrofitted the Marin (north) Approach Viaduct. Retrofit of the San Francisco (south) Approach Viaduct, San Francisco (south) Anchorage Housing, Fort Point Arch, and Pylons S1 and S2 will be completed as part of Phase 2 (see Photograph 7). The retrofit of the Main Suspension Bridge and Marin (north) Anchorage Housing will be completed under Phase 3, scheduled to start in 2007.⁸

The Public Safety Railing Project and the seismic retrofit program currently underway were subject to Section 106 effects analysis and CEQA impacts analysis. No adverse effects to character-defining features or the qualities that qualify the Golden Gate Bridge for listing in the NRHP were identified for either project.⁹ SHPO concurred with these findings, as shown in the attached correspondence, and the previous determination that the Golden Gate Bridge is eligible for listing in the NRHP remains valid.

B10. Significance: This update form has been prepared as part of the Golden Gate Bridge Physical Suicide Deterrent System Project to supplement previous surveys of the Golden Gate Bridge history property and to clarify its historic status and contributing elements. The Bridge is a multi-component historic structure that has been determined eligible for listing in the NRHP, OHP Status Code 2. A collection of agency correspondence regarding the historic status of the bridge and its contributing elements is included in the Historic Property Survey Report and Historical Resources Evaluation Report prepared for this project.

The Golden Gate Bridge has been recognized by several local, state, and federal programs. It was designated as California State Historic Landmark No. 974 in 1990, which automatically listed the property in the California Register of Historical Resources (CRHR). The Golden Gate Bridge and its approaches have been documented by the Historic American Engineering Record (HAER No. CA-31), and the bridge has been recognized by the American Society of Civil Engineers on at least three separate occasions: as one of the Seven [engineering] Wonders of the World in 1955, as a National Civil Engineering Landmark in 1984, and as a Monument of the Millennium in 2001. The Golden Gate Bridge is also San Francisco City Landmark No. 222. Currently, Caltrans lists this bridge as Category 2 (eligible for listing in the NRHP) in its Caltrans Historic Bridge Inventory. The Golden Gate Bridge is also considered to be a historical resource for the purposes of California Environmental Quality Act (CEQA).

The Golden Gate Bridge was determined eligible for listing in the NRHP in 1980, under Criteria A, B, and C, at the national level of significance, with a period of significance of 1933-1938. FHWA Region 9 requested the determination in 1979 when the bridge was about 42 years old, but the California State Historic Preservation Officer, and the Advisory Council for Historic Preservation agreed that the bridge was exceptionally important. Subsequent research and at least three additional inventory and evaluation efforts have refined the eligibility analysis and expanded the identification of the contributing elements of the property and its character-defining features. Caltrans Architectural Historian Stephen Mikesell, who is now Deputy SHPO, evaluated the approaches to the bridge and concluded that the Presidio Viaduct (Bridge 34 0019) and Marina Viaduct (34 0014) were eligible for individual listing in the NRHP, and as contributing elements of the Golden Gate Bridge and SHPO concurred (see the attached correspondence).

As discussed above, the bridge was then evaluated in 1993 for a proposed seismic project, and then again in 1997 for a proposed NHL nomination. The 1997 nomination proposed significance under Criterion C only. The supporting documentation and analysis under Criterion C significance appears to be accurate and is proposed as the correct area of significance in this updated evaluation. The NPS has produced and revised guidelines for the evaluation of historic properties since the time of the 1980 determination and the argument for eligibility under Criteria A and B is no longer adequate. The request for determination argued that bridge was eligible under Criterion A for its association with the history of the Golden Gate Strait and went on to describe the events and trends in California history that took place through the

10 National Park Service, National Historic Landmark Nomination; California OHP, “Directory of Properties in the Historic Property Data File for San Francisco County,” as of December 2007, http://www.dot.ca.gov/hq/structur/strmaint/hp_state.pdf, on file with Northwest Information Center; Caltrans, “Structure & Maintenance Investigation, Historical Significance–State Agency Bridges,” November 2007; Homme, FHWA, “Request for Determination of Eligibility for the Golden Gate Bridge,” 1979; Stephen Mikesell, “HRER Approaches to the Golden Gate Bridge,” 1987; Snyder, Memorandum to SHPO re: Presidio Viaduct and Marina Viaduct, April 3,1990; and Nissley at ACHP, Letter to Markle at FHWA, re: Marina Viaduct Seismic Retrofit, 1994. Caltrans and California Office of Historic Preservation records indicate that the Golden Gate Bridge has been the subject of historic evaluation for many years. The Keeper of the National Register determined the bridge to be eligible for the NRHP in 1977 (Status 2S1) and in 1980 a consensus determination was made, resulting in a Status 2S2 (determined eligible for separate listing). Caltrans Architectural Historian Stephen Mikesell evaluated the approaches to the bridge and concluded that the Presidio Viaduct (Bridge 34 0019) and Marina Viaduct (34 0014) were eligible for listing in the NRHP as contributing elements of the Golden Gate Bridge and SHPO concurred.

entrance that the strait provides to San Francisco Bay and points beyond prior to construction of the bridge. The bridge does not, however, have direct or important associations with any of the events or trends mentioned in the request for determination, which is a required aspect of eligibility under Criterion A. The request also proposed that the bridge was eligible for listing under Criterion B, for its association with its lead proponent and engineer, Joseph B. Strauss. Criterion B is intended for direct personal association with a historically significant individual, and is usually applied to the place where the individual conducted his or her important work, such as a studio, work place, or home. The association of the bridge with Strauss more accurately falls under Criterion C, as the work of a master engineer. The Golden Gate Bridge property, therefore, does not appear to meet Criterion A or Criterion B.12

There is ample documentation and analysis to support eligibility of the bridge property under Criterion C, as an important example of suspension bridge technology, Art Deco design, and the work of more than one master engineer and architect. Please refer to the attached copies of the 1993 evaluation, 1997 nomination, and the 1987 evaluation of the Presidio Approach Road for discussion of eligibility under Criterion C. The 1997 nomination listed eight major engineers and architects who contributed to the project, including Joseph B. Strauss and Irving F. Morrow, of Morrow & Morrow, San Francisco, who served as consulting architect on the original Golden Gate Bridge design and construction project. Both Strauss and Morrow recognized the important historic nature of the setting of the Bridge from the earliest stages of the project. Strauss noted the importance of the history of the area in his initial site investigations, and his respect for existing historic structures directly affected a major component of the final Bridge: the Fort Point Arch (see Figure 1 and Photograph 7).

[In the in 1920s]… the newly created Golden Gate Bridge District was raising tens of millions of dollars through bond sales for a bridge that would span the Golden Gate from Fort Point to Lime Point. Chief Engineer Joseph Strauss initially concluded that Fort Point sat on the optimal location for a huge concrete caisson anchoring the bridge’s San Francisco end. After touring the empty fort, however, he changed his mind. In a 1937 memorandum to the bridge’s Board of Directors, Strauss wrote: “While the old fort has no military value now, it remains nevertheless a fine example of the mason’s art. Many urged the razing of this venerable structure to make way for modern progress. In the writer’s view it should be preserved and restored as a national monument…”

Strauss made some additional calculations and concluded that the fort could be spared by moving the southern anchorage several hundred feet south. However, in order to make up the difference in the total length, he would have to add a ‘bridge within the bridge,’ and consequently designed a steel arch in the southern anchorage to span the old fort. Fort Point would be overshadowed by the new bridge, but it would be preserved. … But the bridge crews went to extraordinary lengths to preserve one of the fort’s most outstanding examples of military engineering, the granite seawall. A tall concrete bridge pylon was planned for the north side of the fort, directly atop the seawall. Instead of demolishing the wall or burying it with concrete, Strauss had it dismantled, stored, and re-erected once the pylon was finished.13

Strauss probably discussed this in detail with Irving Morrow, who in addition to consulting on the bridge project, was the San Francisco District Officer of the Historic American Buildings Survey (HABS) at the time. Morrow oversaw submittal

\begin{itemize}
\item 13 John Martini, Fort Point: Sentry at the Golden Gate, ([San Francisco]: Golden Gate National Park Association, c1991), np. The 1997 nomination indicated that the Castillo de San Joaquin was probably destroyed by construction of the bridge, which seems to be confirmed by Martini’s history of Fort Point, which continues: “Although the main casemated portion of Fort Point was spared during construction, some of the outworks of the fort had to be demolished to make way for the southern bridge anchorage. Early in the excavation process, the bluff south of the fort was cut back several hundred feet, destroying the counterscarp gallery and ten-gun battery. Bridge excavators also uncovered a long-buried adobe shed believed to be a powder magazine from the Castillo de San Joaquin. After its location was noted and photographed, the hut was demolished; it stood in a location too critical for it to be preserved.”
\end{itemize}
of seven photographs of the fort property made by Roger Sturtevant in May 1934, and possibly additional material that has not been digitized by the Library of Congress HABS Program.14

Although these bridge designers obviously appreciated the history of the Golden Gate and the military facilities surrounding the site, their design aesthetic looked forward rather than back and their finished product was ultimately a triumph of both bridge engineering and Art Deco design. Consulting architect Morrow was involved with the project from an early point, by about 1930, and continued to collaborate with Strauss and the rest of the Board of Engineers for the next seven years.15

This early and consistent involvement in the design for the bridge as consulting architect is evident in his design of the largest components, such as the towers, as well as the human-scale elements of the bridge like the handrails and light standards. The Board of Engineers engaged Morrow for the “architectural work” of the main towers above the water line including the metal sheathing of the struts, the above ground anchorages (north and south), toll houses, service buildings, and “hand rail, seats, and electroliers” by 1931, and ultimately, he also designed the treatments of the concrete piers and pylons, the arch over Fort Point, and the color of the bridge.16

The minutes of the Board of Engineers’ meetings, and correspondence and reports by Morrow and Strauss also reveal that the designers accounted for the pedestrian and motorist experience and use of the bridge. Strauss claimed in 1933 that “…the extraordinary scenic setting that this one site alone presents…will make it a sightseer’s Mecca. For the same reason, it is the only bridge the decks of which will afford the incomparable view that has made the Golden Gate famous. To permit that view, the sidewalks are built as broad promenades, with rest seats at intervals.”17 The “rest seats” were not ultimately constructed, but visitor experience and views remained central to the design of several elements of the bridge at the deck level. The Board of Engineers specifically addressed the hand railings again in July 1934, while discussing their attempt “to avoid conflict with the vision of motorists” and remain consistent with the European precedence of railings about one meter high (roughly 3.3 feet). The engineers ultimately decided that it was “…impossible to improve the position of the handrailing without changing the sidewalk level [and] the decision was to leave the railing height at 4 feet.”18

After the bridge opened in May 1937, Morrow summarized his design goals for the bridge, which he considered to be “predominantly ‘industrial’ in character,” explaining that:

Architectural work on the Golden Gate Bridge was not an act of posthumous deification, but proceeded concurrently with the development of the engineering design. The ideal actualizing design work was to repudiate the devastating obligation to be artistic. Superfluous features were excluded, and interest was secured by the proportioning and handling of necessities.

15 Consulting Board of Engineers for the Golden Gate Bridge, Minutes, July 16 and 17, 1934, Charles Derleth Papers, Box 1, Water Resources Center Archives, University of California, Berkeley.
18 Consulting Board of Engineers for the Golden Gate Bridge, Minutes, July 16 and 17, 1934, Charles Derleth Papers, Box 1, Water Resources Center Archives, University of California, Berkeley.
This was true, asserted Morrow, of not only the major structural components, but also the “handrails, electroliers, etc., where of concrete are reduced to lowest terms, and where of metal are designed of structural steel shapes, utilizing appropriate techniques of fabrication and assembly to motivate design.”

The Golden Gate Bridge, as evaluated in the 1997 nomination, is a system of contributing structures that rely upon each to achieve the overall effect of their design. The basic components of the main suspension span and side spans, the pylons, approach viaducts, and Fort Point Arch, are also interconnected with the other contributing elements: the Presidio Approach Road and the Round House. The verbal boundary of the property is delineated in the attached 1997 nomination. The Toll Plaza Undercrossing (34 0069) is also an original component of the Golden Gate Bridge that appears to be eligible as a contributing element of the bridge, but was not individually evaluated in the 1993 or 1997 surveys. The Toll Plaza Undercrossing (34 0069) is also listed in the NRHP as a contributing element of the Presidio of San Francisco National Historic Landmark. The tunnel-like undercrossing is a single span concrete tee beam structure designed to allow vehicular traffic and pedestrians to cross from one side of the roadway to the other underneath the Toll Plaza using surface streets. The west side of the bridge is directly underneath the Administration Building (a non-contributing element because of integrity loss, according to both the 1993 and 1997 surveys), as shown in Figure 1 and Photographs 10-11. The rest of the bridge carries the lanes of traffic as they pass through the toll booths. Caltrans bridge logs indicate that the undercrossing is about 33’ long and 291’ wide, and that it has not undergone major widening or extension since it was completed in 1936. The 1997 nomination included the Toll Plaza area within the proposed NHL boundaries because the plaza serves as the southern ending of the main bridge element and links it to the contributing southern approach road. The Toll Plaza Undercrossing was constructed as part of the original Golden Gate Bridge and its Toll Plaza and, therefore, appears to be a contributing element of the property.

The primary character-defining elements and decorative features of the bridge and its contributing elements are its major structural elements (the suspension bridge anchorages, pylons, piers, towers, main span and side spans), the plate girder bridge, arch bridge, and truss bridges of the approaches, the southern approach roadway (Doyle Drive), main suspension cables, Round House, and Toll Plaza Undercrossing. The Art Deco / Moderne design of these structures is a high ranking character-defining feature of all of these structures and their use within the overall bridge. The railings from the original construction and railings replicated to match original, as well as the layout of the sidewalks – width and construction around piers and pylons – that allow pedestrian use of bridge are essential character-defining features of the property. Although the sidewalks have been extended and widened, they continue to serve as important, human scale features of the bridge that make it readily accessible to the commuting and visiting public.

Other character-defining features that are important in conveying the artistic value of the property are the electroliers, or light standards, the International Orange paint color, and remaining concrete railings. The previous evaluations specifically identified the light standards and pedestrian railings as contributing elements of the property, and both were designed by consulting architect Irving F. Morrow. “In addition to recommending the red vermillion (known as “international orange”) paint color that still graces the Bridge today, Mr. Morrow was largely responsible for the architectural enhancements that define the Bridge’s Art Deco form. The pedestrian railings were simplified to modest, uniform posts placed far enough apart to allow motorists an unobstructed view. The electroliers (light posts) took on a lean, angled form and decorative cladding was added to the portal bracing of the main towers.”

20 National Park Service, “National Historic Landmark Nomination for the Golden Gate Bridge,” August 13, 1997; Caltrans, “2006 Statewide Historic Bridge Inventory Update,” and see HRER, Appendix D.
Overall, the Golden Gate Bridge has lost some historic integrity through the course of seventy years of operation, maintenance, and improvements. Nevertheless, previous effects analysis has not identified adverse effects to the character-defining features of the bridge, and the property clearly conveys its significance as an excellent example of the incorporation of architectural styling to 1930s state-of-the-art engineering, as clarified by this update and as recognized by the state, local, and federal historic preservation programs described herein.

*B11. Additional Resource Attributes: (HP4) Ancillary building (Round House Gift Center building)

*B12. References: Please also consult references included with the attached 1993 and 1997 surveys. Additional references consulted for the preparation of this update form include:

_____, Stephen Mikesell, “HRER Approaches to the Golden Gate Bridge [Presidio Viaduct (Bridge 34 0019) and Marina Viaduct (34 0014)],” 1987.

San Francisco Historical Photograph Collection. San Francisco Public Library. Accessed online at: http://sfpl.org/librarylocations/sfhistory/sfphoto.htm

San Francisco Planning Department, Landmarks Preservation Advisory Board, Golden Gate Bridge, case file for Landmark No. 222, 1999.

Figures:

Figure 1. Detail of 1937 photograph showing Toll Plaza and bridge administration building, with west entrance to the Toll Plaza Undercrossing (34 0069) visible underneath the southern end of the building. (San Francisco History Center, San Francisco Public Library)

Figure 2. Photographs of sidewalk, railing, light standards and roadway. At left, just days before the bridge opened in May 1937, with original light fixtures. (San Francisco History Center, San Francisco Public Library) At right, showing replaced light fixtures, by photographer Jet Lowe, 1984. (HAER CA-31, www.loc.gov). See Photograph 6, below for a view of the new public safety railing.
Figure 3. Detail of 1950 photograph showing “Stop – Pay Toll” sign for northbound traffic. Original light standard with suspended light fixture visible at right. (San Francisco History Center, San Francisco Public Library)

Figure 4. Toll Plaza in 1952, showing clock at center of toll canopy as installed in 1949. (District, 2007 Report of the Chief Engineer)
Figure 6. Specifications of original sidewalks when the bridge opened in May 1937, as described in the 2007 Report of the Chief Engineer:

Separated from the roadway by a 2 foot 6 inch high steel traffic curb, the Bridge, as built, included a pedestrian walkway along its east and west faces. This walkway consisted of a 3/8 inch thick concrete slab supported by steel framework extending from the roadway structure and was approximately 14 1/2 inches higher than the roadway. The sidewalks were originally constructed as follows:

West Sidewalk, from the San Francisco abutment north to pylon N2, it was 10 feet wide, with the following exceptions:

- From pylon S2 to S1, the portion over the Fort Point arch, the sidewalk was 16 feet wide.
- The sidewalk remained at 10 feet up to just north of pylon N1, where it flared out to 33 feet to pylon N2.
- There was no sidewalk at all north of pylon N2.

East Sidewalk, from the San Francisco abutment to pylon N2, the sidewalk was 10 feet wide, with the following exceptions:

- From pylon S2 to S1, the portion over the Fort Point arch, the sidewalk was 16 feet wide.
- The sidewalk remained at 10 feet up to just north of pylon N1, where it flared out to 33 feet to pylon N2.
- From pylon N2 to the Marin abutment the sidewalk was 6 feet wide.\(^{23}\)

Photographs:

Photograph 1. View of west side of bridge, camera facing south, August 2007.
[Source: MacDonald Architects]

Photograph 2. View of east side of bridge from Fort Point, camera facing north, August 2007.
[Source: MacDonald Architects]
Photographs:

Photograph 3. View of west side of the bridge showing South Viaduct, camera facing northeast, August 2007.
[Source: MacDonald Architects]

Photograph 4. View of North Viaduct from Vista Point, camera facing south.
[Source: MacDonald Architects]
Photographs:

Photograph 5. View of bridge deck and towers (right), camera facing north, March 2007.

[Source: JRP Historical Consulting, LLC]
Photographs:

[Source: JRP Historical Consulting, LLC]

Photograph 7. Seismic retrofit in progress at Fort Point Arch, camera facing northwest, March 2007.
[Source: JRP Historical Consulting, LLC]
[Source: JRP Historical Consulting, LLC]

[Source: JRP Historical Consulting, LLC]
<table>
<thead>
<tr>
<th>Resource Name or #</th>
<th>Assigned by recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Gate Bridge</td>
<td></td>
</tr>
</tbody>
</table>

Photograph 10. West side of Toll Plaza Undercrossing (34 0069), view north, April 2008.
[Source: JRP Historical Consulting, LLC]

Photograph 11. East side of Toll Plaza Undercrossing (34 0069), view southwest, April 2008.
[Source: JRP Historical Consulting, LLC]
APPENDIX D: Golden Gate Bridge Historic Status

OHP Historic Properties Data File

Historical Significance – State Agency Bridge Sheets
<table>
<thead>
<tr>
<th>PROPERTY-NUMBER</th>
<th>STREET ADDRESS</th>
<th>NAME</th>
<th>CITY</th>
<th>OWN</th>
<th>YEAR</th>
<th>DPN</th>
<th>PROG-REFERENCE-NUMBER</th>
<th>STAT-DAT</th>
<th>MRS</th>
<th>CRIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>006948</td>
<td>38-901336</td>
<td>SR 101</td>
<td>GOLDEN GATE BRIDGE</td>
<td>SAN FRANCISCO</td>
<td>D</td>
<td>1933</td>
<td>NAT. REG.</td>
<td>38-0043</td>
<td>06/28/97</td>
<td>7J</td>
</tr>
</tbody>
</table>
701 records listed.
Historical Significance - State Agency Bridges

District 04

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Bridge Name</th>
<th>Location</th>
<th>Historical Significance</th>
<th>Year Built</th>
<th>Year Wid/Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 0008K</td>
<td>CORTE MADERA CREEK</td>
<td>04-MRN-101-8.47-LKSP</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td>27 0009</td>
<td>WORNUM DRIVE UC</td>
<td>04-MRN-101-8.02-CMAD</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1929</td>
<td>1975</td>
</tr>
<tr>
<td>27 0011L</td>
<td>NOVATO CREEK</td>
<td>04-MRN-037-11.96-NVTO</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td>27 0011R</td>
<td>NOVATO CREEK</td>
<td>04-MRN-037-11.96-NVTO</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td>27 0013</td>
<td>PETALUMA RIVER</td>
<td>04-MRN-037-14.47</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1958</td>
<td></td>
</tr>
<tr>
<td>27 0018</td>
<td>COYOTE CREEK</td>
<td>04-MRN-001-1.42</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>27 0019</td>
<td>REDWOOD CREEK</td>
<td>04-MRN-001-6.02</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1926</td>
<td>1970</td>
</tr>
<tr>
<td>27 0020</td>
<td>OLEMA CREEK</td>
<td>04-MRN-001-22.81</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>27 0021</td>
<td>OLEMA CREEK</td>
<td>04-MRN-001-22.96</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>27 0022</td>
<td>LAGUNITAS CREEK OVERFLOW</td>
<td>04-MRN-001-28.39</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>27 0023</td>
<td>LAGUNITAS CREEK</td>
<td>04-MRN-001-28.51</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>27 0024</td>
<td>LAGUNITAS CREEK OVERFLOW</td>
<td>04-MRN-001-28.56</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>27 0025</td>
<td>ELLIS CREEK</td>
<td>04-MRN-001-34.97</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1931</td>
<td></td>
</tr>
<tr>
<td>27 0026</td>
<td>WALKER CREEK</td>
<td>04-MRN-001-44.45</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>27 0027</td>
<td>STEMPLE CREEK</td>
<td>04-MRN-001-47.41</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>27 0028</td>
<td>ESTERO AMERICANO</td>
<td>04-MRN-001-50.47</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1925</td>
<td></td>
</tr>
<tr>
<td>27 0033S</td>
<td>SAN RAFAEL HARBOR</td>
<td>04-MRN-101-10.81-SRF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1941</td>
<td>1953</td>
</tr>
<tr>
<td>27 0035L</td>
<td>SAN RAFAEL VIAUDECT</td>
<td>04-MRN-101-10.72-SRF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1965</td>
<td>1971</td>
</tr>
<tr>
<td>27 0035R</td>
<td>SAN RAFAEL VIAUDECT</td>
<td>04-MRN-101-10.72-SRF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1941</td>
<td>1971</td>
</tr>
<tr>
<td>27 0039</td>
<td>FORT CRONKHITE TUNNEL UC</td>
<td>04-MRN-000-0-SAUS</td>
<td>1. Bridge is on NRHP</td>
<td>1918</td>
<td>1994</td>
</tr>
<tr>
<td>27 0040L</td>
<td>WALDO TUNNEL</td>
<td>04-MRN-101-89-SAUS</td>
<td>2. Bridge is eligible for NRHP</td>
<td>1937</td>
<td></td>
</tr>
<tr>
<td>27 0040R</td>
<td>WALDO TUNNEL</td>
<td>04-MRN-101-89-SAUS</td>
<td>2. Bridge is eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>27 0052</td>
<td>GOLDEN GATE BRIDGE</td>
<td>04-MRN-101-1-L.01</td>
<td>2. Bridge is eligible for NRHP</td>
<td>1937</td>
<td></td>
</tr>
<tr>
<td>27 0054</td>
<td>FALLON CREEK</td>
<td>04-MRN-001-47.6</td>
<td>5. Bridge not eligible for NRHP</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>27 0056</td>
<td>TOMASINI CANYON</td>
<td>04-MRN-001-29.85</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1925</td>
<td>1978</td>
</tr>
</tbody>
</table>
Structure Maintenance & Investigations

Historical Significance - State Agency Bridges

San Francisco County

District 04

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Bridge Name</th>
<th>Location</th>
<th>Historical Significance</th>
<th>Year Built</th>
<th>Year Wid/Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 0001</td>
<td>SUNSET BLVD UC</td>
<td>04-SF-035-2.12-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1931</td>
<td></td>
</tr>
<tr>
<td>34 0002</td>
<td>LAKESIDE EQUESTRIAN & PUC</td>
<td>04-SF-035-.1-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1922</td>
<td>1956</td>
</tr>
<tr>
<td>34 0003</td>
<td>SFOBB WEST BAY</td>
<td>04-SF-080-6.35-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td>1962</td>
</tr>
<tr>
<td>34 0004</td>
<td>YERBA BUENA CROSSING</td>
<td>04-SF-080-7.72-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td>1962</td>
</tr>
<tr>
<td>34 0007L</td>
<td>SFOBB EAST-SPAN SKYWAY OAKLAND TOUCHDOWN</td>
<td>04-SF-080-8.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>34 0007R</td>
<td>SFOBB EAST-SPAN SKYWAY OAKLAND TOUCHDOWN</td>
<td>04-SF-080-8.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>34 0012</td>
<td>MISSION STREET OC</td>
<td>04-SF-280-R.3.11-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>34 0012Y</td>
<td>MISSION STREET OC</td>
<td>04-SF-000-0-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1951</td>
<td></td>
</tr>
<tr>
<td>34 0014</td>
<td>MARINA VIADUCT</td>
<td>04-SF-101-8.33-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td></td>
</tr>
<tr>
<td>34 0015</td>
<td>WEST PACIFIC AVENUE UC</td>
<td>04-SF-001-6.18-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0016</td>
<td>PRESIDIO TUNNEL</td>
<td>04-SF-001-6.33-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0017</td>
<td>KOBBE AVENUE UC</td>
<td>04-SF-001-6.67-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0018</td>
<td>RUCKMAN AVENUE UC</td>
<td>04-SF-001-8.66-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0019</td>
<td>PRESIDIO VIADUCT</td>
<td>04-SF-101-9.14-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td>1939</td>
</tr>
<tr>
<td>34 0022</td>
<td>JFK DRIVE UC</td>
<td>04-SF-001-4.45-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td></td>
</tr>
<tr>
<td>34 0023G</td>
<td>N1-N101 CONNECTOR PUC</td>
<td>04-SF-001-7.07-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0024</td>
<td>HILTOP PUC</td>
<td>04-SF-035-.25-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>34 0030</td>
<td>THIRD STREET UC</td>
<td>04-SF-101-.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>34 0030S</td>
<td>THIRD STREET UC</td>
<td>04-SF-101-.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1955</td>
<td></td>
</tr>
<tr>
<td>34 0031</td>
<td>HARKNESS AVENUE POC</td>
<td>04-SF-101-.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>34 0032</td>
<td>SILVER AVENUE OC</td>
<td>04-SF-101-1.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>34 0033</td>
<td>ALEMANY CIRCLE UC</td>
<td>04-SF-101-2.03-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>34 0034S</td>
<td>CESAR CHAVEZ UC</td>
<td>04-SF-101-2.95-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>34 0040G</td>
<td>N1-S101 CONNECTOR OC</td>
<td>04-SF-001-6.97-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0044</td>
<td>BROTHERHOOD WAY UC</td>
<td>04-SF-001-R.31-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1952</td>
<td></td>
</tr>
<tr>
<td>34 0046</td>
<td>SOUTHERN FREEWAY VIADUCT</td>
<td>04-SF-280-R.4.4-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0047S</td>
<td>BAYSHORE BLVD UC</td>
<td>04-SF-101-2.84-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>34 0050</td>
<td>25TH STREET POC</td>
<td>04-SF-101-3.22-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1953</td>
<td></td>
</tr>
<tr>
<td>34 0051</td>
<td>22ND STREET POC</td>
<td>04-SF-101-3.53-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1953</td>
<td></td>
</tr>
<tr>
<td>34 0054Z</td>
<td>TERMINAL SEPARATION</td>
<td>04-SF-080-5.45-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1955</td>
<td>1993</td>
</tr>
<tr>
<td>34 0056</td>
<td>PAUL AVENUE UC</td>
<td>04-SF-101-1.11-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>34 0057L</td>
<td>BACON STREET UC</td>
<td>04-SF-101-1.41-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>34 0057R</td>
<td>BACON STREET UC</td>
<td>04-SF-101-1.41-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>34 0060</td>
<td>COUNTY LINE UC</td>
<td>04-SF-101-.01-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td>1972</td>
</tr>
<tr>
<td>34 0061</td>
<td>BLANKEN AVENUE UC</td>
<td>04-SF-101-.18-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
</tbody>
</table>
Historical Significance - State Agency Bridges

San Francisco County

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Bridge Name</th>
<th>Location</th>
<th>Historical Significance</th>
<th>Year Built</th>
<th>Year Wid/Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 0001</td>
<td>SUNSET BLVD UC</td>
<td>04-SF-035-2.12-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1931</td>
<td></td>
</tr>
<tr>
<td>34 0002</td>
<td>LAKESIDE EQUESTRIAN & PUC</td>
<td>04-SF-035-1-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1922</td>
<td>1956</td>
</tr>
<tr>
<td>34 0003</td>
<td>SFOBB WEST BAY</td>
<td>04-SF-080-6.35-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td>1962</td>
</tr>
<tr>
<td>34 0004</td>
<td>YERBA BUENA CROSSING</td>
<td>04-SF-080-7.72-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td>1962</td>
</tr>
<tr>
<td>34 0007L</td>
<td>SFOBB EAST-SPAN SKYWAY OAKLAND TOUCHDOWN</td>
<td>04-SF-080-8.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>34 0007R</td>
<td>SFOBB EAST-SPAN SKYWAY OAKLAND TOUCHDOWN</td>
<td>04-SF-080-8.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>34 0012</td>
<td>MISSION STREET OC</td>
<td>04-SF-280-R3.11-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>34 0012Y</td>
<td>MISSION STREET OC</td>
<td>04-SF-000-0-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1951</td>
<td></td>
</tr>
<tr>
<td>34 0014</td>
<td>MARINA VIADUCT</td>
<td>04-SF-101-8.33-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td></td>
</tr>
<tr>
<td>34 0015</td>
<td>WEST PACIFIC AVENUE UC</td>
<td>04-SF-001-6.18-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0016</td>
<td>PRESIDIO TUNNEL</td>
<td>04-SF-001-6.33-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1938</td>
<td></td>
</tr>
<tr>
<td>34 0017</td>
<td>KOBBE AVENUE UC</td>
<td>04-SF-001-6.67-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0018</td>
<td>RUCKMAN AVENUE UC</td>
<td>04-SF-001-6.86-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0019</td>
<td>PRESIDIO VIADUCT</td>
<td>04-SF-101-9.14-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td>1939</td>
</tr>
<tr>
<td>34 0022</td>
<td>JFK DRIVE UC</td>
<td>04-SF-001-4.45-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td></td>
</tr>
<tr>
<td>34 0023G</td>
<td>N1-N101 CONNECTOR PUC</td>
<td>04-SF-001-7.07-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0024</td>
<td>HILTOP PUC</td>
<td>04-SF-035-.25-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1956</td>
<td></td>
</tr>
<tr>
<td>34 0030</td>
<td>THIRD STREET UC</td>
<td>04-SF-101-.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>34 0030S</td>
<td>THIRD STREET UC</td>
<td>04-SF-101-.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1955</td>
<td></td>
</tr>
<tr>
<td>34 0031</td>
<td>HARKNESS AVENUE POC</td>
<td>04-SF-101-7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1970</td>
<td></td>
</tr>
<tr>
<td>34 0032</td>
<td>SILVER AVENUE OC</td>
<td>04-SF-101-1.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>34 0033</td>
<td>ALEMANY CIRCLE UC</td>
<td>04-SF-101-2.03-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>34 0034S</td>
<td>CESAR CHAVEZ UC</td>
<td>04-SF-101-2.95-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>34 0040G</td>
<td>N1-S101 CONNECTOR OC</td>
<td>04-SF-001-6.97-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1939</td>
<td></td>
</tr>
<tr>
<td>34 0044</td>
<td>BROTHERHOOD WAY UC</td>
<td>04-SF-001-R.31-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1952</td>
<td></td>
</tr>
<tr>
<td>34 0046</td>
<td>SOUTHERN FREEWAY VIADUCT</td>
<td>04-SF-280-R4.4-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0047S</td>
<td>BAYSHORE BLVD UC</td>
<td>04-SF-101-2.84-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>34 0050</td>
<td>25TH STREET POC</td>
<td>04-SF-101-3.22-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1953</td>
<td></td>
</tr>
<tr>
<td>34 0051</td>
<td>22ND STREET POC</td>
<td>04-SF-101-3.53-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1953</td>
<td></td>
</tr>
<tr>
<td>34 0054Z</td>
<td>TERMINAL SEPARATION</td>
<td>04-SF-080-5.45-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1955</td>
<td>1993</td>
</tr>
<tr>
<td>34 0056</td>
<td>PAUL AVENUE UC</td>
<td>04-SF-101-1.11-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td>1970</td>
</tr>
<tr>
<td>34 0057L</td>
<td>BACON STREET UC</td>
<td>04-SF-101-1.41-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>34 0057R</td>
<td>BACON STREET UC</td>
<td>04-SF-101-1.41-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>34 0060</td>
<td>COUNTY LINE UC</td>
<td>04-SF-101-0.01-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td>1972</td>
</tr>
<tr>
<td>34 0061</td>
<td>BLANKEN AVENUE UC</td>
<td>04-SF-101-1.8-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
</tbody>
</table>
San Francisco County

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Bridge Name</th>
<th>Location</th>
<th>Historical Significance</th>
<th>Year Built</th>
<th>Wd/Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 0062</td>
<td>LINCOLN BLVD UC</td>
<td>04-SF-101-9.71-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1938</td>
<td></td>
</tr>
<tr>
<td>34 0063S</td>
<td>ALEMANY CIRCLE UC</td>
<td>04-SF-101-2.2-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>34 0064K</td>
<td>ALEMANY CIRCLE UC</td>
<td>04-SF-101-2-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1954</td>
<td></td>
</tr>
<tr>
<td>34 0069</td>
<td>TOLL PLAZA UC</td>
<td>04-SF-101-9.85-SF</td>
<td>1. Bridge is on NRHP</td>
<td>1936</td>
<td></td>
</tr>
<tr>
<td>34 0070</td>
<td>280/101 IC - S101 (UPPER), N101 TO N280 (LOWER)</td>
<td>04-SF-101-1.63-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>34 0070E</td>
<td>280/101 IC - S280 TO S101(UPP), N101 TO N280(LOWER)</td>
<td>04-SF-280-R4.07-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1966</td>
<td></td>
</tr>
<tr>
<td>34 0070H</td>
<td>280/101 IC - NB280 & SB280 TO SB101 (WU LINE)</td>
<td>04-SF-101-1.48-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>34 0071F</td>
<td>ALEMANY BLVD UC (RW LINE)</td>
<td>04-SF-101-1.94-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>34 0072L</td>
<td>SFWD WATER MAIN UC</td>
<td>04-SF-280-R4.05-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1960</td>
<td></td>
</tr>
<tr>
<td>34 0073</td>
<td>ALEMANY BLVD OC</td>
<td>04-SF-280-R3.87-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>34 0074</td>
<td>ALEMANY BLVD OC</td>
<td>04-SF-280-R3.28-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>34 0075</td>
<td>JUSTIN DRIVE OC</td>
<td>04-SF-280-R3.23-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>34 0076</td>
<td>ST MARYS POC</td>
<td>04-SF-280-R3.53-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1963</td>
<td></td>
</tr>
<tr>
<td>34 0078</td>
<td>THERESA STREET POC</td>
<td>04-SF-280-R2.62-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0079K</td>
<td>SAN JOSE AVENUE UC</td>
<td>04-SF-280-R2.72-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0079L</td>
<td>SAN JOSE AVENUE UC</td>
<td>04-SF-280-R2.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0079R</td>
<td>SAN JOSE AVENUE UC</td>
<td>04-SF-280-R2.7-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0079S</td>
<td>SAN JOSE AVENUE UC</td>
<td>04-SF-280-R2.69-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0080</td>
<td>BRANCH EAST UC</td>
<td>04-SF-280-R2.75-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0081</td>
<td>MONTEREY BLVD ON-RAMP OC</td>
<td>04-SF-280-R2.69-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0082</td>
<td>PAULDING STREET OC</td>
<td>04-SF-280-R2.21-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td>1970</td>
</tr>
<tr>
<td>34 0083</td>
<td>BADEN STREET OC</td>
<td>04-SF-280-R2.47-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0085</td>
<td>ROUTE 80/82 SEPARATION</td>
<td>04-SF-280-R7.71-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td>1971</td>
</tr>
<tr>
<td>34 0085S</td>
<td>SICKLES AVENUE UC</td>
<td>04-SF-280-R7.5-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0086</td>
<td>SAN JOSE AVENUE OC</td>
<td>04-SF-280-R9.9-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0087</td>
<td>SAN JOSE AVENUE OC</td>
<td>04-SF-280-R1.46-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0088</td>
<td>BAYSHORE VIADUCT</td>
<td>04-SF-101-1.42-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1955</td>
<td></td>
</tr>
<tr>
<td>34 0089</td>
<td>LYELL STREET UC</td>
<td>04-SF-280-R2.89-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td>1972</td>
</tr>
<tr>
<td>34 0090</td>
<td>MONTEREY BLVD EB OC</td>
<td>04-SF-280-R2.82-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0091</td>
<td>MONTEREY BLVD WB OC</td>
<td>04-SF-280-R2.87-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0092Y</td>
<td>BOSWORTH STREET UC</td>
<td>04-SF-280-R2.9-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0094</td>
<td>OCEAN AVENUE OC</td>
<td>04-SF-280-R1.77-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0095</td>
<td>GENEVA AVENUE OC</td>
<td>04-SF-280-R1.65-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td></td>
</tr>
<tr>
<td>34 0096</td>
<td>WHIPPLE AVENUE POC</td>
<td>04-SF-280-R1.06-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1964</td>
<td>1992</td>
</tr>
<tr>
<td>34 0099</td>
<td>18TH STREET OC</td>
<td>04-SF-280-R6.57-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1968</td>
<td></td>
</tr>
<tr>
<td>34 0102</td>
<td>FAITH STREET POC</td>
<td>04-SF-101-2.61-SF</td>
<td>5. Bridge not eligible for NRHP</td>
<td>1968</td>
<td></td>
</tr>
</tbody>
</table>